Minimal genus of a multiple and Frobenius number of a quotient of a numerical semigroup

نویسنده

  • Francesco Strazzanti
چکیده

Given two numerical semigroups S and T and a positive integer d, S is said to be one over d of T if S = {s ∈ N | ds ∈ T} and in this case T is called a d-fold of S. We prove that the minimal genus of the d-folds of S is g + ⌈ (d−1)f 2 ⌉, where g and f denote the genus and the Frobenius number of S. The case d = 2 is a problem proposed by Robles-Pérez, Rosales, and Vasco. Furthermore, we find the minimal genus of the symmetric doubles of S and study the particular case when S is almost symmetric. Finally, we study the Frobenius number of the quotient of some families of numerical semigroups. MSC: 20M14; 13H10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Frobenius problem for numerical semigroups

In this paper, we characterize those numerical semigroups containing 〈n1, n2〉. From this characterization, we give formulas for the genus and the Frobenius number of a numerical semigroup. These results can be used to give a method for computing the genus and the Frobenius number of a numerical semigroup with embedding dimension three in terms of its minimal system of generators.

متن کامل

Numerical Semigroups Generated by Intervals

We study numerical semigroups generated by intervals and solve the following problems related to such semigroups: the membership problem, give an explicit formula for the Frobe-nius number, decide whether the semigroup is a complete intersection and/or symmetric, and computation of the cardi-nality of a (any) minimal presentation of this kind of numerical semigroups. A numerical semigroup is a ...

متن کامل

The Frobenius problem for numerical semigroups with embedding dimension equal to three

If S is a numerical semigroup with embedding dimension equal to three whose minimal generators are pairwise relatively prime numbers, then S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a− 1}, and a < b < cb− da. In this paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius number, and the set of pseu...

متن کامل

Transformation of BL-general Fuzzy Automata

In this paper, we prove that any BL-general fuzzy automaton (BL-GFA) and its quotient have the same behavior. In addition, we obtain the minimal quotient BL-GFA and minimal quotient transformation of the BL-GFA, considering the notion of maximal admissible partition. Furthermore, we show that the number of input symbols and time complexity of the minimal quotient transformation of a BL-GFA are ...

متن کامل

Frobenius numbers of generalized Fibonacci semigroups

The numerical semigroup generated by relatively prime positive integers a1, . . . , an is the set S of all linear combinations of a1, . . . , an with nonnegative integral coefficients. The largest integer which is not an element of S is called the Frobenius number of S. Recently, J. M. Maŕın, J. L. Ramı́rez Alfonśın, and M. P. Revuelta determined the Frobenius number of a Fibonacci semigroup, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015